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ABSTRACT

We prove that there exist self-similar sets of zero Hausdorff measure,
but positive and finite packing measure, in their dimension; for instance,
for almost every u € [3,6], the set of all sums Z? and™" with digits
with an € {0,1,u} has this property. Perhaps surprisingly, this behavior
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is typical in various families of self-similar sets, e.g., for projections of
certain planar self-similar sets to lines. We establish the Hausdorff mea-
sure result using special properties of self-similar sets, but the result on
packing measure is obtained from a general complement to Marstrand’s
projection theorem, that relates the Hausdorff measure of an arbitrary
Borel set to the packing measure of its projections.

1. Introduction

Self-similar sets, i.e., compact sets K that satisfy K = |J, S;K for some finite
collection of contracting similitudes {S;}, are well understood under separation
conditions, such as the “Open Set Condition” (OSC, see [9]), but they remain
quite mysterious when arbitrary overlaps are permitted. In general it is known
that the Hausdorff, Minkowski and packing dimensions of a self-similar set co-
incide [4], but much less is known about the behavior of Hausdorff and packing
measures on general self-similar sets. We prove
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Figure 1. Projecting an s-dimensional Sierpinski gasket for s < 1.
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THEOREM 1.1: There exist self-similar sets in R that have zero Hausdorff
measure but positive and finite packing measure in their dimension. In par-
ticular, if % <r< %, then this holds for the self-similar sets

Kr = { ianr": a, € {0, 1,u}}
n=0

for a.e. u in a certain nonempty interval.

Up to scaling, K, can be identified with the orthogonal projection of the s-
dimensional Sierpinski gasket G" (where s = s(r) = log3/|logr|) on the line
y = uz, see Figure 1.

Other dynamical settings where it has been shown that the natural measures
are packing measures rather than Hausdorff measures are limit sets of certain
Kleinian groups [26] and parabolic Julia sets [3]; in these cases the phenomenon
is due to parabolic fixed points. Self-similar sets have a more rigid structure,
and it seems much harder to construct an explicit example of a self-similar set
as in the theorem. Indeed, no such example is known, and in particular it is an
unsolved problem to exhibit specific parameters 7, u for which the conclusion of
Theorem 1.1 holds.

Next, we illustrate our results on families arising from projections of a given
set in the plane. The i.f:s. {S;}i<n, is said to satisfy the Open Set Condition
(OSC) if there exists a non-empty open set U such that S;U are disjoint and lie
in U for i = 1,...,m. Consider a self-similar set X C R?, defined as the unique
non-empty compact satisfying

(1.1) K=JrK+b), withr; €(0,1) and b € R?
i=1

(thus, rotations are not allowed). We assume that the similitudes S;(z) := r;z+b;
for i = 1,...,m satisfy the OSC. It is well-known (see [9]} that the Hausdorff
dimension dimgK equals the similarity dimension s, defined by > . rf = 1,
and the s-dimensional Hausdorff measure #*(K) is positive and finite. For any
6 € [0,w) the orthogonal projection of K on the line ycos® = zsiné, denoted
projg K, is self-similar. If s < 1, then Marstrand’s theorem (see [5]) says that
dimg (projg K) = s for Lebesgue-a.e. 6. Thus, it is natural to inquire about the
s-dimensional measures of projections. To state our Hausdorff measure result,
let

IP = {6 € [0,7): projs: K — R is not one-to-one}
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(the letters “ZP” stand for “intersection parameters”). In the second part of the
theorem we assume the Strong Separation Condition, i.e., that

THEOREM 1.2: Let K C R? be a self-similar set (1.1) of dimension s € (0,1)
that is not on a line.

(i) If the i.f.s. {S;}i<m satisfies the OSC, then H*(projy, K) =0 for Lebesgue-
ae 0cIP.

(ii) If the i.fs. {S;}i<m satisfies the Strong Separation Condition, then IP is
a compact perfect set, and the set {6 € TP: H*(proj, K) = 0} is a dense G5 set
inZP.

Part (i) of the theorem has content only if ZP has positive Lebesgue measure,
but part (ii) is always meaningful. One case where the theorem applies was
indicated in Theorem 1.1; see Example 2.8. As another example, consider K =
C, x C, where C, is the standard middle-a Cantor set, with oz = 1 — 2r. We have
s = dimyK = log4/|logr|, so s < 1 when r < 1. We show in Example 6.1 that
the set ZP = IP(r) contains a non-empty interval for r € (§, ;).

Next we state the result on packing measure P?, again restricting attention to
projections. The method of proof can be traced to Kaufman [11].

PROPOSITION 1.3: Let K C R? be any Souslin set such that H*(K) > 0 for some
s € (0,1). Then P*(projy ) > 0 for a.e. 8. Moreover,

dimg {6 € [0,7): P?(projy K) =0} < s.

Remarks: (a) Note that the assumption involves the Hausdorff measure of K. It
cannot be stated in terms of the packing measure of K, since packing dimension
may drop for almost all projections, see Jarvenpdi [10] and Falconer-Howroyd [6].

(b) Proposition 1.3, in conjunction with Theorem 1.2 and Example 2.8, yields
Theorem 1.1.

(c) Proposition 1.3 is quite close to Mattila {15, Theorem 4.3, we derive it
from a more general result (Theorem 4.1) that applies to parameterized families
where the similarity dimension varies. For instance, this theorem implies that
the set K7, = {ZZ‘;O anr™: a, € {0,1, u}} has positive packing measure in its
dimension s(r) = log3/|logr|, for every u € [2,4] and ae. r € [, 3]; see
Example 2.9. This result cannot be obtained from a statement on orthogonal
projections.

To prove the result on packing measure, we derive estimates that also determine
which kernels assign positive capacity to typical projections.
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Let ® € C'(0,00) be a nonnegative decreasing function which vanishes
for all = sufficiently large. Recall that for any Souslin set F, the capacity
Capg(F) is positive if and only if F' supports a positive Borel measure such that

[ T ®(Iz — y]) dv(@)dv(y) < oo (see [2]).

COROLLARY 1.4: Let K C R? be a Souslin set, and let s € (0,1). Consider a
kernel ® as above.
(i) If H*(K) > 0 and [;° r°|®(r)|dr < oo, then

dimpy{6: Capg(proj, K) = 0} < s.
(i) If P*(K) < oo and fooo r8|®'(r)|dr = oo, then
Capg(proj, K) =0 for all 8 € [0, 7).

(Part (ii) is easily derived, and is included for comparison.)

Background. Let K be a self-similar set on the real line. Schief [23], building
on the work of Bandt and Graf [1], showed that #*(K) > 0 is equivalent to the
OSC. In many interesting examples it appears that the iterated function system
has an “overlap”; however, it is non-trivial to verify that the OSC fails since
the open set U may be rather complicated. Pollicott and Simon [22] considered
families defined by A-expansions with deleted digits, with the contraction ratio A
as parameter. They proved that in many cases the Hausdorff dimension coincides
with the similarity dimension for almost every A in some interval J, in spite of
an apparent overlap. Solomyak [25] showed that the self-similar sets studied in
[22] have zero Hausdorfl measure in their dimension for a.e. A € J. The proof
used in an essential way arithmetic properties of those sets and did not extend
even to the simplest families of projections.

The rest of the paper is organized as follows. Section 2 contains general state-
ments of results for one-dimensional self-similar sets and examples. The proofs of
Hausdorff measure results are in Section 3. In Section 4 we prove a general result
on packing measure in the setting of a family of maps from a metric space to
R. Capacities in general kernels are considered in Section 5 where Corollary 1.4
is derived. Further examples are collected in Section 6. Section 7 contains gen-
eralizations to higher dimensions, concluding remarks, and open questions. The
reader is referred to the books [5, 16] for background in dimension theory and
material concerning self-similar sets.
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2. Self-similar sets

Consider a one-parameter family of iterated function systems (i.fs.)
{S2,...,5) }res where

SMz) = ri(Nz +a;(A) for z € R,

and J C R is a closed interval. We assume that a;(\) and r;()\) belong to C(J)
and

(2.1) 0<B<ri(M)<p<l foralli<m and A€ J

Let K be the self-similar set corresponding to A, that is, K* = |JI~, K} where

= SMK*). The similarity dimension s()\) is the unique solution of the
equatlon POV rfM () = 1. If ri(A) = r(A) for all i < m, we say that the
ifs. {S}}i<m is homogeneous; then s(\) = logm/|logr(A)|. Denote A =
{1,...,m} and Q@ = AN, For u € A" we write Sj = S) o---0S5, and
Tu(X) =74, (A) - ... - 7o, (A). The map II(},-): @ — K* defined by

(2.2) Ow) = lim S5, (00 =D Turwns (N, ()
n=1

will be called the “natural projection map” below. It follows from (2.1) and (2.2)
that TI(-,w) € C*(J) for all w € £, and moreover,

(2.3) the map w > I{-,w) is continuous from 2 to C1(J).

Denote
fw,r()‘) = H(’\aw) - H()‘v T)'

We say that the transversality condition holds on J if for any w,r € ,

(24) if e J: fur(A)=f,.(A)=0 then f,.=0.
Define
(2.5) IP:= {)\ €J: w7 f,,(A)=0but f,, # O}.

When we considered, in Theorem 1.2, the projections of a planar self-similar
set K, we assumed that K is not on a line and (in part (ii)) that it satisfies the
Strong Separation Condition. The analogues of these assumptions in the current
general setting are

(2.6) YAeJ, K is not a singleton
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and
(2.7) for=0=2w=rT

THEOREM 2.1: Suppose that the one-parameter family of iterated function
systems {S?, ..., S} }res satisfies (2.1), (2.4) and TP # (). Then

(i) H*M(K*) = 0 for Lebesgue-a.e. A € TP.

(ii) Suppose, in addition, that (2.6) and (2.7) hold. Then IP is a compact
perfect set, and the set {\ € ZP: H*})(K*) = 0} is a dense G set in ZP.

(iii) Suppose that (2.1), (2.4) and (2.7) hold, and moreover, r;(\) = 'rf()‘) for
some positive function ¢()\) and some reals r; € (0,1). Then 0 < P*M(K*) < oo
for all A € J except a set of Hausdorff dimension smax = supy¢ y s(A).

Remarks: (a) Parts (i) and (ii) are proved in Section 3; part (iii) is derived
in Section 4 from a more general theorem which has nothing to do with self-
similarity.

(b) Part (i) of the theorem has content whenever the set ZP has positive
Lebesgue measure. We discuss below how to check this.

(c) The condition on contraction rates r;(\) in part (iii) is satisfied, e.g., when
{S2}i<m is a homogeneous i.f.s. for all A € J, or when r;(A) = r;.

Given an ifs. of similitudes {S;}i<m and a probability vector {p;}i<m, the
corresponding self-similar measure is defined as the unique Borel probability
measure v satisfying v = 3. pivoS; 1. see Hutchinson [9]. Of course, v is
supported on the self-similar set for the if.s. The self-similar measure is called
natural if p; = r{ where s is the similarity dimension.

COROLLARY 2.2: For any self-similar set K with similarity dimension s, if
0 < P*(K) < oo, then P®|x is the natural self-similar measure up to scaling
(the same is true for the Hausdorfl measure). In particular, under the condi-
tions of Theorem 2.1(iii), for all A € J except a set of Hausdorff dimension $max,
the normalized restriction of P¥*) to K* coincides with the natural self-similar
measure on K*.

Proof: The argument is analogous to that in [9, 5.3(1)(iii)], but we provide it for
completeness. Suppose that K = |J;,,(SiK) = U;,, Ki and S; has contraction
factor r;. By subadditivity,

PK) < Y PR = D rPo(K) = PU(K).

i<m i<m
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Thus, the inequality above is an equality; since 0 < P*(K) < oo, we must have
P(K; NK;) =0 for i # j. Therefore, for any Borel set A C K,

PU(A) =) PANK) =) P(Si(S;'ANK))
i<m i<m
=Y rP(S;TANK).
i<m
This shows that the restriction of P° to K satisfies the equation defining the
natural self-similar measure, and the claim follows by its uniqueness. ]

Next we give some useful consequences of (2.7). We note that (2.7) holds in
all natural applications, except in the case of projections of a self-similar set
satisfying the OSC but without Strong Separation.

LeMMA 2.3: Suppose that (2.7) holds. Then

A IP={xeJ:Fi#j L} nNK} #0}.

(ii) ZP is compact.

(iii) If X g ZP, then H*M(K*) > 0.

(iv) If (2.4) holds on J, then there exists 6 > 0 such that for all w, T € Q with
w1 7é T1s

(2.8) €T, fur NI < 6= 1] > 6.

Proof: (i) If A € IP, then there exist w # 7 such that f, -(A) = 0. Using that
(A aw) = SII(A\ w) for all @ € {1,...,m}, and the invertibility of S,, we find
W', 7" with § = w} # 7| = j such that f,s .~(\) = 0, whence K} N IC;»‘ # . The
other direction follows from (2.7).

(ii) By part (i), Ag € clos(ZP) implies that there are A, — Aq such that
Fum wm (An) = 0 for some w(™ and 7(™ with w™ # 7. Using compactness
of 1 we obtain that \g € ZP.

(iii) If A ¢ ZP then, by part (i), the i.fs. {S}}i<m satisfies the Strong
Separation Condition and hence H*™(K*) > 0.

(iv) By (2.3), the set {f, -: w1 # 71} is compact in C(J). If (2.8) is false, then
the compactness argument shows that there are w, 7 with w; # 71, and A € J,
such that f,, -(X) = fi, ;(A) = 0. In view of (2.3), this is a contradiction. ]

The measure of the set of intersection parameters. Let £ denote Lebesgue
measure on the line. The following proposition contains a necessary condition
for L(ZP) > 0; it is proved in Section 3.
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PROPOSITION 2.4: Suppose that the i.f.s. satisfies conditions (2.1) and (2.4), as
in Theorem 2.1(i). Then dimygIP < 28pay; thus, if spax € (0, %) then L(ZP) =
0.

We have an easy-to-check (although far from sharp) sufficient condition for
L(ZP) > 0 only in the homogeneous case. Some non-homogeneous families can
be handled as well, see Example 6.2. Denote by Conv(A) the convex hull of a set
A.

LEMMA 2.5: Let {S},...,Sn}xcs be a one-parameter family of homogeneous
i.f.s. satisfying (2.7). Suppose that for some i # j there exists a subinterval
J C J such that

(2.9) Conv(K}) N Conv(K}) #0 forall X € J
and

(2.10) K* — K> is an interval for all A € J.
Then J C ZP.

Proof: Condition (2.10) implies K* — K* = Conv(K*) — Conv(K*). For any set
A CRwehave A—A = {t € R: AN(A+t) # @}. Since the i.f:s. are homogeneous,
K2 and IC;‘ are both translates of r(A)K?; thus, (2.9) implies X} N IC; # 0 for all
A € J, and the lemma follows by Lemma 2.3. ]

Remark: Conditions (2.9) and (2.10) are easy to verify. Indeed, let K be the
self-similar set for a homogeneous i.fs. {S;}i<m, with Sj(z) = rz + a;. Then
K — K is also a self-similar set:

K-K= {icnr": Cn € F}
n=0

where I' = {a; — a;}i j<m. Let g be the minimal gap between two consecutive
elements of {a;}i<m and let G be the maximal gap between two consecutive
elements of T'. It is easy to see that Conv(K;) N Conv(KC;) # @ for some ¢ # j if
and only if

(2.11)

maxI’ > g,
1—7r

and K — K is an interval if and only if

(2.12) max ' > %G.

1—r
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Families of projections. Let K = |-, (r:K + b;) C R? be a self-similar set
(1.1). We are interested in the one-parameter family of projections

{projg K}gejo,x)- The corresponding similitudes are S8 (x) = riz + projg bi.

LEMMA 2.6: The one-parameter family of i.f.s. {S%,..., Sgl}ge[oy,r) satisfies the
transversality condition (2.4).

Proof: Let II: 2 — K be the natural projection map. We have
I1(4, w) = proj oll(w) = ﬁ(w) - (cos 8, sin 6),
8
hence
2, |4 2 (112
IT(6,) ~ IO, M) + | 5 (16,w) = 118, 7) | = Ifi(w) - Ti(r) .
Since f,, »(#) = 0 if and only if Ti{w) = TI(7), the condition (2.4) follows. 1

Remarks: (a) For a family of projections, 8 € ZP iff proj, : K — R is not one-to-
one. Thus, Theorem 2.1(i)(ii), combined with Lemma 2.6, immediately implies
Theorem 1.2.

(b) There is an equivalent way to represent families of projections which
is sometimes convenient. Let S}z) = rz + (¢; + d;A) for i < m. Then
K = Vi+ )2 projele where tanf = A and K is the limit set of the planar
ifs. {(z,y) = ri(z,y) + (¢, di) i<m.-

The next lemma sharpens Proposition 2.4 for families of projections.

LEMMA 2.7: Let K C R? be a self-similar set (1.1) that satisfies the Strong Sepa-
ration Condition. Then dimgZP < dimg(K — K). Therefore, if
dimg (K — K) < 1, then H*(proj, K) > 0 for a.e. 8; in particular, this is the
case if s = dimgK < 1.

Proof: The Strong Separation Condition implies that there exists n > 0 such
that {J,.;(Ki — ;) C {x € R%: |x| > n}; note that T(x) := x/|x| is Lipschitz
on the latter set. By Strong Separation, the family of projections satisfies (2.7).
Hence Lemma 2.3(i) implies that

IP = {9 € [0,7): (cos8,sinb) € T(U(IC,- - Kj))}.
i#]
Thus, dimgZP < max; ;j dimg(K; — K;) < dimg (K — K). The last claim follows
by Lemma 2.3(iii). n

The following example was already mentioned in Theorem 1.1.
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Example 2.8: Let

(2.13) KT = {i ™ an € {0, 1,u}}.
n=0

We fix r and let 4 € R be the parameter. According to the remark above,
{K! }uer is affine-equivalent to the family of projections of the s-dimensional Sier-
pinski gasket G = {Zio:o cnr™: e € {0, l,i}}, where s = log3/|logr|. Thus,
the transversality condition (2.4) holds by Lemma 2.6. The property L(ZP) > 0
is checked with the help of Lemma 2.5. We have I' = {0,+1,+u,+(u — 1)}.
Assume, without loss of generality, that > 2. Then maxI’ = u, g = 1, and
G = max{1,u — 2}. It follows from (2.11) and (2.12) that ZP > [z, 21=n)]

b 1-3r 1"
This interval is nonempty for r € (1, 1). Theorem 2.1 implies that H*(K7) = 0
and 0 < P*(K7) < oo for all r € (},3) and a.e. u € [1=7, 2(11_—:)]. Note that G”

satisfies the Strong Separation Condition and G" — G" is self-similar with similar-
ity dimension log7/|logr|. Thus, by Lemma 2.7, #*(K7}) > 0 for all r < % and
a.e. u. The case r € (1, 1) remains open although we suspect that L(ZP) > 0

for a.e. such 7.

Families with contraction rate as parameter. Suppose that S?(z) = Az+a;
for i < m. The self-similar set for this i.f.s. is

K> = IC)‘(D) = {i cp\"i ey € D} where D = {a;}i<m.
n=0

The study of such a family with the simplest apparent “overlap”, for D = {0, 1, 3}
and A > %, was initiated by Keane and Smorodinsky, see [12]. Pollicott and
Simon [22] introduced the transversality condition and verified it in several cases.
A more efficient method to check transversality was found by Solomyak [24] and
refined by Peres and Solomyak [20]. The reader is referred to [21, 25] for a
detailed discussion of this method and its consequences.

Example 2.9: Let K7, be as in (2.13) but, unlike Example 2.8, we fix u and use
T as a parameter. Since we are concerned with sets of Hausdorff dimension less
than one, r < % Assume, without loss of generality, that v > 2. It follows from
(21, Cor. 5.2(ii)] that if u € (2,4) then transversality in r holds for r € (0, 3).
Lemma 2.5 implies (after a little calculation) that the property £L(ZP) > 0 holds
in all these cases, with ZP D [H%u, 3]. Theorem 2.1 implies that H*(")(K7) = 0

and 0 < P*(KT) < oo, with s(r) = log3/|logr|, for all u € (2,4) and a.e.

e (dad)
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Note that in the special case u = 3, Solomyak [25] showed H*(")(K") = 0 for
a.e. r € (%, %) However, the proof depended on the arithmetic nature of the
digits and did not extend to other values of u.

3. Zero Hausdorff measure
Recall that A = {1,...,m} and denote A* = {J,5, A" Write [u| = n for
u € A" and let w|n = wy ... w, for w € Q. The proof of Theorem 2.1(i),(ii) uses

the Bandt—Graf criterion for zero Hausdorff measure of a self-similar set. For
S: R — R? let ||S|| = sup{|Sx|: |x| < 1}.

THEOREM 3.1 (Bandt and Graf [1]): Let K be a self-similar set for the i.fs.
{Si}ica, and let s be the similarity dimension. Then H*(K) = 0 if and only if
for any e > 0

Ju,v € A*, u#£wv, |58, —1d| <e.

In the setting of Theorem 2.1 we have S} (z) = r;(\)z + a;(A), so

rv(A) Sy(@o(N) — Si(zo(N))
ru(A) ru(A) '

Here zo()\) is arbitrary; it is convenient to take zo(A) = II(A,1) where 1 =
111... € Q. Then S} (zo())) = I(A, v1).

(527183 — 1) (@) = (2257 — 1) @ = 20(V) +

Definition: Let V. be the set of A € J such that there exist distinct u,v € A*
such that

To(}) —& _e
(3.1) OV € (e7%,€)
and
(3.2) | Fo1 7] = [T(A, 1) = TI(A, uI)] < eru(A).

Proof of Theorem 2.1(i): By Theorem 3.1, H**(K*) = 0 if and only if X € V,
for all £ > 0. Thus it is enough to prove that ZP \ V, has zero Lebesgue measure
for any £ > 0. To this end, we will show that ZP V. has no Lebesgue density
points. Fix £ > 0 and Mg € ZP. Since Ay € P, there exist w, T € {2 such that
fur 20 but fur(A) =0. Then K K # 8 for any n,p € N.

Now we outline the proof in a special case, to indicate the idea (which is
inspired by {17]), and then provide all the details in the general case. Assume,
for simplicity, that r;{A) = r for all 4 < m and all A € J. Let v = w|n and
v = 7|n. The intersecting cylinders K,° and K)° have the same diameter c;7".
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Transversality implies that (for n sufficiently large) these cylinders move relative
to each other, as A varies close to Ag, with a speed that is uniformly bounded
from both zero and infinity. Thus, within a distance car™ from Ag there is an
interval I of size czer™ such that |II(\,v1) — TI(\, ul)] < ecir™ for all X € 1.
This means that I C V., and since |I}/cor™ = c3e/c2 does not depend on n, we
see that A is not a density point for ZP ~\ V.. This concludes the outline of the
proof in the special case.

To deal with the general case we use the following two lemmas. The first one
is a standard result from renewal theory: for the proof see [7, Vol. II, Lemma
5.4.2).

LEMMA 3.2: For any >0, 8 € (0,1), and Ag € J there exists N € N with the
following property: For any s,t € A*, with r5(X\o)/r:(Xo) € [8,87Y], there exist
u,v € A* such that s,t are their respective prefixes, |u| — |s| < N, |v| — |t|{ < N,
and

’I"u()\o) -7 _7n
o Oh0) € (e, e).
LEMMA 3.3: For any u € A* and A\j, Az € J,
ru{A2) _  Liulag—
3.3 <ew 274
(3:3) raOv) =

where f3 is from (2.1) and L := max; ||r{| o)

Proof: We have

ri(A2) _ Iri(A2) = mi(M)| _ L
log (A1) < ri(A1) = 8

for any 1 < m by {2.1), and (3.3) follows. ]

[A2 = A1

Next we make some preliminary observations needed in the proof. For ¢ and
£ in  let ¢ A £ denote their largest common prefix (an empty word if {1 # &).
It follows from (2.1) and (2.2) that

(34) |fe,e(A)] £ 2Cireae(A) for all (£ € Q

where

Cy = maxllaillgey) - (1-p) 7
Further, by (2.3),

(3.5) {fe.e(N): ¢, €€ Q} is compact in C'(J).
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Proof of Theorem 2.1(i) continued: Recall that € > 0 and A\g € TP are fixed
and we are trying to prove that Ay is not a density point for ZP V.. Let
w,T € Q be such that f, -(A) = 0 but f, - # 0. Fix a large k € N and find
minimal n,p such that 7,,{Xo) < p* and Trip(ho) < p*. Then n,p < k and
Twin(X0)Trip(Ae) € [B,87"] where J is defined in (2.1). By Lemma 3.2, there
exist u,v € A* with |u| - n < N, |[v]| — p < N, such that u|n = win, vlp = 7|p,
and

ru(M) _ e/ es3

ro00) € (e7%/°, 7).
Lemma 3.3 now implies that for

ep

A=l € ——=

1A =Rl < 3L{k + N)
we have

T'u(/\) —-e/3 _e/3 TU()‘) —€ €

(3.6) r2ho) € (e7%/°,e/?) and ) € (e %, ¢).

Next we find an interval of A for which (3.2) holds. Since f, -(Ao) = 0, it
follows by the choice of u,v and (3.4) that

(37) vaT,uT()‘O)[ —<— lva,'r()‘O)l + !fuf,w()‘())l S 4clpk’

We have |f], -(Ao)| > ¢ for some § > 0 by the transversality condition (2.4). By
(3.5), we can find 1 > 0 and kg € N so that

(3.8) =Xl <n and k>ko=|fig N>

Denote Fy := [Ao — 4Cyp* /8, Mg +4C1p* /). If k > ko and 4C,p* /8 < n, then, in
view of (3.7) and (3.8),

(3.9) 3A; € Fy such that f7,7(A) =0.

We will show that \g is not a density point for ZP V.. To this end, we estimate
L{Fx NV,.} from below. We can assume that e¢/3 < 2 and k is so large that

4Cyp% ef
5 min 3Lk + N)’ 7}

Then (3.1) holds on Fj by (3.6). Also by (3.6) we have

BNk < ry(Xo) < 2ry(A)  for A € Fy.
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Thus, for (3.2) to hold, it suffices that
(3.10) |fy1.1N] < (e/2)BY 0.

It follows from (3.5) that there exists C3 > 0 such that [|f{ cllc(;) < C2 for all
(,€ € Q. Thus, |f,7,7(M)| < C2|A=A1], and the inequality (3.10) holds whenever

,BN+1Pk5

3.11 - M| L
(311 A= N < St

Choose € small enough so that

BN+1plcE < 4C1pk

Cy - 1)
It follows from (3.9) and (3.11) that
B phe/(2C,) pN e
> —— - = . .
LBVt 210 —gemms =1l 156,

Since | Fi| = 0 as k — 00, we conclude that Ay is not a density point for TP N V..
The proof is complete. 1

Proof of Theorem 2.1(ii): Here (2.7) was assumed, hence ZP is compact by
Lemma 2.3(ii). Thus, the Baire Category Theorem holds in ZP. For € > 0 let
V. be as in the proof of part (i). Then

A eZP: H V(K =0} = [ (Vi/n NIP).
neN

1t suffices to show that V. NZP is dense in TP for any € > 0 (it is immediate from
(3.1) and (3.2) that V. is open). But this was, in fact, verified, in the course of
the proof of part (i), since the point A\; from (3.9) is in V. NZP. The argument
in part (i) can also be adapted to show that TP is perfect: Given Ay € ZP
and w,7 € § such that f, ,(Ag) = 0 we may find, using the assumption (2.6),
sequences @ and 7 in §2 that agree with w and 7 respectively in the first n digits,
and satisfy fz 7(Xo) # 0. Then, using transversality, we find A; € ZP close to Ag
such that f; (A1) = 0 and, in particular, A € ZP. |

Proof of Proposition 2.4: Say that Ag € ZP; if there exist w,7 € Q and § > 0
such that f, r(Xo) = 0 and |f;, ,(Xo)| > &. By the transversality condition (2.4),
we have ZP = UneN IP,/n, so it suffices to show that dimpyZPs < 254,ax for any
fixed § > 0. For u € A* denote I} = Conv(K}). If \p € IP;s and w,T € Q are
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as above, then the intervals I} and I} move relative to each other with a speed
bounded below by §/2 as A varies close to Ag, provided that u, v are sufficiently
long prefixes of w, 7. (This follows from (3.5), as in the proof of Theorem 2.1(i).)
Thus, the set {\ € J: I} NI} # 0} is a union of at most § intervals, each of
which has length at most $ max{|I}}| + |I}|: A € J}, with a uniform constant C.

Let us write u € C.()\) if |I}| = 74()) < € and no prefix of u has this property.
Since 3 ,cc.(n) 5™ = 1, the cardinality of C.(}) is at most 8~ 1e=*(). Let
J = [A1, A2]. Observe that

. logri(A)
3.12 I <IN, where t ;= min ——*
(3.12) [l < GH",  where {g}log”(m
for all A € J and w € A*. It follows from the discussion above that the set
IP;s may be covered by % B~2¢~25(M) intervals each of length not greater than
%at. Thus, dimgZPs < 281/t < 2Smax/t. Subdividing J into small intervals we
can assume that t in {3.12) is arbitrarily close to one, hence dimygZPs < 25may.
|

4. Positive packing measure

THEOREM 4.1: Let (2,d) be a complete separable metric space and A C Q a
Souslin subset with HY(A) > 0. Suppose that we are given a one-parameter
family of maps IIy: A — R, with A € J, where J C R is a closed interval.
Assume that for some positive function c()) there exist positive § and M such
that for all w # 7 the functions

W) = v, () = BU TN

d(w, 7))
belong to C*(J) and satisfy
(4.1) 1¥llossy < M
and the transversality condition:
(4.2) [T\ + ¥’ (A)|>8 forall e J

Then
dimH{)\ e J: 'Ps()‘)(HAA) = 0} < Smax

where Smax = sup{s(A\): A € J} and s(A) = v/a(}).
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Remarks: (a) Since the functions ¥ are bounded, the maps IT) are Holder with
exponent a()), so P7(A) < co implies that P*(N) (I (4)) < co.

(b) The statement of the theorem has content only when spax < 1.

The proof of the theorem is based on the following result on “projections”
of a measure. Recall that for a Borel probability measure v on R" the lower
a-dimensional density is defined by

Qa(y, z) = lim inf M
rl0 ro

where B(z, ) is the closed ball of radius r centered at z.

THEOREM 4.2: Suppose that we are in the setting of Theorem 4.1 and p is a
Borel probability measure on Q) such that

(4.3) (nx p){(w,7) € Q% d(w,7) <r} < Cr? forallr > 0.

Then the measure vy = Il\u satisfies

(4.4) dimH{)\ e J: /QS(A)(UA,.T) dvy(z) = oo} < Smax-
In order to deduce Theorem 4.1 we use the following result:

THEOREM 4.3 (Taylor and Tricot [27, Thm. 5.4]): For any o > 0 and n € N
there exists a constant p(a,n) > 0 with the following property: For any Borel
probability measure v on R, Borel set A CR™ and C > 0,

D, (v,z) <C forallz € A= P*(A) > C 'p(a,n)r(A).

Proof of the implication 4.2 = 4.1: Since H7(A) > 0, by Frostman’s lemma in
metric spaces, due to Howroyd [8] (see also [16, p. 120]), we can find a probability
measure  supported on A such that u(B(z,r)) < Cr” for any ball B(z,7). Then,
clearly, (4.3) is satisfied. The Borel probability measure vy = Ilyu is supported
onlyAforall Ae J. If QS(A)(U)\,:E) < 00 for vy-a.e. z, then P*M)(IIy A) > 0 by
Theorem 4.3. By (4.4), this happens for all A € J except on a set of dimension
less than or equal to sy, as desired. |

The proof of Theorem 4.2 relies on the following proposition, which will also
be useful in Section 5.

PROPOSITION 4.4: Under the assumptions of Theorem 4.2, let 8y > sy« and let
n be a probability (Frostman) measure on J such that n(B(z, p)) < cp** for any
p > 0. Then

(4.5) J = / / v (B(x, r"‘(’\)))du,\(x)dn(/\) <Cr? foralit>0.
J
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Proof of the implication 4.4 = 4.2: Suppose that the Hausdorff dimension of the
set in (4.4) is greater than Smay. Then Frostman’s lemma implies that there exists
a measure 7) as in Proposition 4.4, supported on this set. Since s(A) = y/a(A),
Fatou’s Lemma and (4.5) yield that

B (z, r"‘(’\)))
//Ds()\) Uy, Z)dva(A)dn(X //hmlnf ———— 2 duy{x)dn(X) < oo,
rl0 Y
which is a contradiction. |
The proof of Proposition 4.4 uses the following simple lemma.

LEMMA 4.5: Suppose that U € C1(J) satisfies (4.1) and (4.2). Then for p < §/2
the set {\ € J: |¥(A)| < p} is a union of at most 1 + M|J|/6 intervals of length
at most 4p/é.

Proof of Lemma 4.5: By (4.2), if |¥()\)| < p < §/2 then |¥'(N)| > §/2, so the
set {A € J: |¥(A)] < p} is a union of intervals on each of which the function ¥
is monotone. The length of each of these intervals is at most 2p/8/2 = 4p/é.
Moreover, each of these intervals lies in an interval of the set

fred: W] <6/2},

and the latter intervals have length at least 6/M by (4.1). Since they don’t
intersect, their number is at most 1 + M|J}/é. ]

Proof of Proposition 4.4: Making a change of variable and exchanging the order
of integration yields

J = /Q/nn{)\ € J: Ha(w) — ()] < r"‘()‘)}du(w)d,u(r).

Decompose this integral as follows:

j:// :// + // =T+ ) Tk
QJQ d(w,T)<r kZ:l 2k=1p<d(w,T)<2kr 0 Z *

k=1
To estimate Jj recall that ¥,, - (A) = [IIx(w) — I (7)]d(w, 7)~**) and observe
that for d(w,7) > 2*¥~1r we have
n{X: M) = Ta(r)] < XV} < pfd: [T, (V)] < V(@5 1r) oWy
= n{: [T (V)] < 27Dy
< X W, (V)] < 27 Deminy
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where amin = infacy a(A). Choose ky € N such that 2~ (ko—Demin < §/2. Fix
k> koand p=2"(-Domna Let ¥ = ¥, r. Since 7 is a Frostman measure, we
obtain for k > kp by Lemma 4.5:

(4.6) n{A: W, - (A)] < 27k Damin} < Cg—kamins

where the constant C does not depend on k,w, or 7. Now we continue the
estimate of J using (4.6) and (4.3):

ko—1
J < Z (1 x p){(w,7): dlw, ) < 257}

k=0

+ ) 2mkemine (4 p){(w, 7): dw, T) < 2Fr}
k=kgo
ko—1 oo

<C' Y (@)1 40 2 Remme (25r)

k=0 k=kq

SC” (2’60 + 2k0('y—amin31)),’,7_

In the last inequality we used the hypothesis that 81 > Smax = 7/Qmin- The
proof is complete. n

Proof of Theorem 2.1 (iii): We let Q@ = AN, as in Section 3, and equip it with
the metric d(w,7) = ryar(A1) where J = [A1,A2]. Further, let A = Q and
I, = II(}),-) be the natural projection map (2.2). Since r;(A) = rf()‘), (3.4)
implies that II, is Holder with exponent a()\) = ¢(A)/¢(A1). Then

M(w) —IIx(r) _ Mi(w) —IIx(7)

or(d) = A7) ™ T oY = T(@) —Tr(7)

where w{ # 7{. Since (2.7) is assumed, the transversality condition (4.2) holds
by Lemma 2.3(iv), and (4.1) is obviously satisfied. We have dimgA = v =
s{A1), with HY{A) > 0. By the definition of the similarity dimension we have
3(A1)/a(X) = s(X), and the claim follows by Theorem 4.1. |

Proof of Proposition 1.3: We let (€2, d) be R? with the Euclidean metric. Further,
A = K and IIg = projg. Then a(f) = 1 for all  and conditions (4.1), (4.2) are
obviously satisfied. Thus, the claim follows by Theorem 4.1. 1
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5. Positive capacity in general kernels

Let ® € C'(0,00) be a positive decreasing function which vanishes for all x
sufficiently large. Recall the following (see [2]):

Definition: Let v be a Borel probability measure on R. The ®-energy of v is
defined by

£v) = [ [ 2z - o) dv(alavty)
The P-capacity of a Souslin set F C R is defined by
Capg (F) = sup{€s(v)™': v = Borel probability on F}.

THEOREM 5.1: Suppose that we are in the setting of Theorem 4.1, ® is a kernel
as above, and let ®(r) = ®(r'/*™) for X € J.
(i) If [;°r7|®'(r)|dr < oo and H7(A) > 0 then

5.1 dimg{ A € J: Capg, (IIxA) =0 < Smax-
A

(i) If f;° r7|®'(r)|dr = oo and PY(A) < oo then Capg, (TIxA) = 0 for all
AEeJ.

Proof of Theorem 5.1: (i) As in the proof of Theorem 4.1, let 41 be the Frostman
measure supported on A with exponent v and let vy = IIyu. Then

Eo, (va) = / JE R PNCEA®)
1
(5.2) = /0 (v ¥ V,\){(x,y): lz —y| < ra(’\)}|{>’(r)|dr.

Suppose that the set in (5.1) has dimension 81 > Smax and let 7 be the Frostman
measure on this set satisfying n(I) < c|I|*! for any interval I C J. We have

v = °° v z, 7o) "(rYduvy (z r
/J £, (v2) d(N) / / [ (B ONE (ld(@in()a
SC/O r|®'(r)|dr < oo

by the Fubini Theorem, (5.2), and Proposition 4.4. Thus, Capg, (IIxA) > 0 for
n-a.e. A, a contradiction.

(ii) Note that I, is a(A)-Holder for all A € J. Fix any A € J. By the definition
of packing measure, see [16}, there is a countable covering of A by sets of finite
prepacking measure. Since capacity is countably subadditive, it is enough to
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prove the statement for each of these sets. Thus, without loss of generality, A
can be covered by Cr~7 balls of radius r for all r > 0, hence I, A can be covered
by Cp~*X balls of radius p for all p > 0. Changing the variable r = p/*() we
have

| oo = [ e lar = oo
0

By [2, Thm. IV.2], this yields Capg, (IIxA4) = 0. |

6. Further examples

Example 6.1: Let C? = C X C, where C, is the middle-a Cantor set for o =
1 — 2r. The family of projections {proj,C2}o<o<r is affine-equivalent to the
family of self-similar sets for the ifs. {rz,rz + 1,72 + u,rz + 1 + u}luso. We
assume that r < % so dimgC? < 1. The analysis of this family is similar to
the one done in Example 2.8. The transversality condition (2.4) follows from
Lemma 2.6. To apply Lemma 2.5 we check (2.11) and (2.12). One can check

that ZP D F := [arctan I_TQT,arctan ﬁ], which is a non-empty interval for
r € (3,1). The conclusion is that for all 7 € (3, ) and ae. § € F,

H*(projoC2) =0 and 0 < P*(projyC2) < oo, where s = log4/|logr|.

Since C2 — C? is a planar self-similar set having similarity dimension log9/|log |
we have L(ZP) = 0 for all r < } by Lemma 2.7. The case r € (§, §) remains
open although we suspect that £(ZP) > 0 for a.e. such 7.

Remark: For s = 1 the statement of Theorem 1.2 still holds, and is well-known.

In Examples 2.8 and 6.1 this corresponds to r = % and r = % respectively. In
this case more precise information is available: the one-dimensional Hausdorff
measure is zero for all projections in irrational directions. This was proved by

Kenyon [13] and Lagarias and Wang [14].

Non-homogeneous families (see the definition in Section 2). A variant of
Lemma 2.5 holds for such families, provided (2.9), (2.10) are replaced by

(a) Conv(K}) intersects K3 for all i # j and A € J;

(b) the Newhouse thickness of K* is greater than one for A € J.
(See [19] for the definition of Newhouse thickness.) However, condition (b) is
not easy to check (note also that in the homogeneous case (b) is more restrictive
than (2.10)). Still, the notion of thickness is used to verify that L(ZP) > 0 in
the following example; this example is inspired by Moreira [18].
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Example 6.2: Fix a,3,7 > 0 so that min{a, 3} > % and a+8+v < 1.
Consider the self-similar set K C R? defined by the i.f.s. {S;}i<3, where S;(x) =
ax, Sy(x) = fx+(1,0), and S3(x) = yx+(0,1). Clearly, the Strong Separation
Condition is satisfied and s = dimygX < 1. We are interested in the family of
projections of X which is affine-equivalent to the family K* of self-similar sets
for the i.f.s. {az, Bz + 1,7z + u}lyer on the real line. Transversality (2.4) for the
family of projections holds by Lemma 2.6. To check when L{ZP) > 0 observe
that K* D K,p where K,z is the self-similar set for the i.f.5. {ax, Bz +1}. Since
min{a, 8} > § we have that K,z is a Cantor set of thickness greater than one.

Let K} = aK* and K¥ = vK* 4+ u. By the Gap Lemma of Newhouse (see [19]),
KynKy 2> aKasN (vKap +u) #0

whenever (aKqop) N Conv(vKyps + u) # 0. Since Conv(Kyg) = [0, ﬁ], the last
condition certainly holds for u € F := [‘Igﬁ’()]' Theorem 2.1 implies that
H3(projs K} = 0 and 0 < P*(projy K) < oo for a.e. § with arctand € F.

7. Generalizations and concluding remarks

Multidimensional generalizations. All the statements of the paper extend to
higher dimensions but we restrict attention to the main results, emphasizing the
case of projections. Of course, we need transversality conditions. For simplicity,
we state them in the form most convenient for the proof.

We consider similitudes in Rf which do not involve any rotations, that is,
S2M(x) = r;(A\)x + a;()\) for i < m and A € J. Assume that J C R? is open, with
p > ¢, the condition (2.1) holds, r; € C*(clos J), and a; € C(clos J — R¢). The
set-up at the beginning of Section 2 readily extends to this situation (including
the definitions of II(\,w), f, -, and ZP). The only modification needed is in the
definition of transversality. We write £, for the Lebesgue measure in R?.

Say that the p-parameter family of i.f.s. {S},..., S }rcy satisfies the transver-
sality condition if for any w # 7 in € such that f, » # 0, there exist C;, C, such
that for all r,e > 0 and Ag € J,

if | fu,r(Ao)] < r then

(7.1) E,,{,\ € B(Xo, C17): |fur(Mo)] < s’r} > Caet L, (B(Do, Cir))-

THEOREM 7.1: Suppose that the family of i.f.s. satisfies (2.1) and (7.1). If TP #
0, then
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(i) HN(K*) = 0 for a.e. A € IP.
(ii) If, in addition, (2.7) holds, then {\ € ZP: H*(K*) = 0} is a dense Gs
set in TP.

Recall that G(n,¢) is the Grassmann manifold of all ¢-planes in R™ passing
through the origin and dim G(n,£) = £(n — £), see [16]. Denote by projg the
orthogonal projection of R" on © € G(n, ¥{).

COROLLARY 7.2: Let K = J,,.(r:iK + a;), with r; € (0,1) and a; € R", be a
self-similar set in R™, and let s be the similarity dimension.

(i) If the OSC holds, then H*(projg K) = 0 for a.e. © € ZP.

(ii) If the Strong Separation Condition holds, then {© € TP: H*(projg K) = 0}
is a dense G set in IP.

One can show that in the setting of Corollary 7.2,
IP ={© € G(n,{): projg |k is not one-to-one}.

Next we state the analog of Theorem 4.1.

THEOREM 7.3: Let (Q,d) be a complete separable metric space and A C §2 a
Souslin subset with H7(A) > 0. Suppose that we are given a one-parameter
family of maps IIx: A — Rf, with A\ € J, where J C RP is open and p > /.
Assume that for some function o)) there exist M,C > 0 such that for allw # 7

the functions
I (w) — Oa(7)

d(w, 7))
belong to C'(clos J), with ||¥||o < M, and satisfy the transversality condition:
for all T > 0,

\II()‘) = ‘I’w,‘r(’\) -

(7.2) {A e J: |¥(N)| < 7} can be covered by Crt~P balls of radius .
Then
dimg {X € J: PM (I, 4) = 0} < smax + (p — £)
where s(\) = v/a(N).
COROLLARY 7.4: Let K C R™ be any Souslin set such that H5(K) > 0

for some s € (0,£). Then P*(projg K) > 0 for a.e. © € G(n,f). Moreover,
dimg{© € G(n,£): P5(projg K) =0} < l(n—~£) + (s —¥¢).

Outline of the proof of Theorem 7.1: Let us restrict attention to the measure-
theoretic statement in Theorem 7.1(i); the topological statement follows the same
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general scheme, but is easier. The argument follows the proof of Theorem 2.1(i),
so we refer to it without repeating all the notation. Since contraction rates
r;(A\) are scalar, the beginning of the proof requires no change. The point where
distinctions arise is after (3.7) where the transversality condition was applied.
Now we use transversality (7.1) with 7 = Cp* and see that )¢ is not a Lebesgue
density point. ]

Proof of Corollary 7.2: Here the parameter set J is a local coordinate chart for
the Grassmann manifold G(n,£), with p = dim G(n, ) = £(n — £). As a metric d
on G(n,£) we take the Hausdorff metric for the intersections of £-planes with the
unit sphere in R™. Let He(w) be the orthogonal projection of Mw) € K C R
on the plane © € J where Il is the natural projection map from the sequence
space € to K. We need to check the transversality condition (7.1). Observe that
fu,~(©) is the orthogonal projection of the vector x := (w) — II(7) # 0 on
© € J. If |fu,~(©0)] < r, then there exists an {-plane ©; orthogonal to x, such
that d(6p,0;) < C1r. Now it is easy to see that the set

{0¢€ B(©y, C1r): |fw,'r(6)‘ < z;"r}

contains an (er)-neighborhood of a manifold of dimension dimG(n — £,£) =
{(n — £ — 1) intersected with B(©g,C1r). This implies

L,{6 € B(6y,C17): |fu,(©)| <er} >C(er)trtn=t-1
>C'e!L,(B(Oo, C17)),

and (7.1) is verified. Thus, Theorem 7.1 can be applied and the claim follows.
|

Proof of Theorem 7.3: The proof of Theorem 4.1 transfers, except that instead
of the application of Lemma 4.5 in (4.6), we refer to the transversality condition
(7.2). |

Proof of Corollary 7.4: As in the proof of Corollary 7.2, the parameter set J is
a local coordinate chart for the Grassmann manifold G(n, £), with p = £(n — £).
Further, IIg(w) is the orthogonal projection of w € K = A C R™ on the plane
© € J and a(©) = 1 for all © € J. The only issue which requires discussion is the
transversality condition (7.2). By definition, ¥(8) is the orthogonal projection of
a unit vector in R™ to ©. It is easy to see that {© € G(n,£): |¥(0)] <r}liesina
er-neighborhood of a smooth manifold of dimension dim G(n—1,£) = £(n—£—1)
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in G(n, £) and is therefore contained in the union of no more that C(r—1)4n—¢-1)
balls of radius r. This proves (4.2) and Theorem 7.3 may be applied. 1

Open Questions. In the first three questions, we restrict attention to orthogonal
projections of a self-similar set K in the plane that satisfies the OSC and has
dimension s € (0,1).
(i) Is it true that P*(projy K) > 0 for a residual set of 67
(ii) We have shown that in many cases H*®(proj, K) = 0 for a typical 8 in some
interval. Is there a gauge function ¢ such that H¥ is the natural measure
{up to scaling) for such projections?
(iii) Find a bound on the dimension (Hausdorff or packing) of the exceptional
set in Theorem 1.2(1) on Hausdorff measure of projections.
(iv) Find a specific self-similar set of zero Hausdorff measure and positive pack-
ing measure.
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